3.628 \(\int \frac{1}{(d+e x)^3 (a+b (d+e x)^2+c (d+e x)^4)^2} \, dx\)

Optimal. Leaf size=213 \[ -\frac{\left (6 a^2 c^2-6 a b^2 c+b^4\right ) \tanh ^{-1}\left (\frac{b+2 c (d+e x)^2}{\sqrt{b^2-4 a c}}\right )}{a^3 e \left (b^2-4 a c\right )^{3/2}}-\frac{b^2-3 a c}{a^2 e \left (b^2-4 a c\right ) (d+e x)^2}+\frac{b \log \left (a+b (d+e x)^2+c (d+e x)^4\right )}{2 a^3 e}-\frac{2 b \log (d+e x)}{a^3 e}+\frac{-2 a c+b^2+b c (d+e x)^2}{2 a e \left (b^2-4 a c\right ) (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )} \]

[Out]

-((b^2 - 3*a*c)/(a^2*(b^2 - 4*a*c)*e*(d + e*x)^2)) + (b^2 - 2*a*c + b*c*(d + e*x)^2)/(2*a*(b^2 - 4*a*c)*e*(d +
 e*x)^2*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) - ((b^4 - 6*a*b^2*c + 6*a^2*c^2)*ArcTanh[(b + 2*c*(d + e*x)^2)/Sq
rt[b^2 - 4*a*c]])/(a^3*(b^2 - 4*a*c)^(3/2)*e) - (2*b*Log[d + e*x])/(a^3*e) + (b*Log[a + b*(d + e*x)^2 + c*(d +
 e*x)^4])/(2*a^3*e)

________________________________________________________________________________________

Rubi [A]  time = 0.390107, antiderivative size = 213, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {1142, 1114, 740, 800, 634, 618, 206, 628} \[ -\frac{\left (6 a^2 c^2-6 a b^2 c+b^4\right ) \tanh ^{-1}\left (\frac{b+2 c (d+e x)^2}{\sqrt{b^2-4 a c}}\right )}{a^3 e \left (b^2-4 a c\right )^{3/2}}-\frac{b^2-3 a c}{a^2 e \left (b^2-4 a c\right ) (d+e x)^2}+\frac{b \log \left (a+b (d+e x)^2+c (d+e x)^4\right )}{2 a^3 e}-\frac{2 b \log (d+e x)}{a^3 e}+\frac{-2 a c+b^2+b c (d+e x)^2}{2 a e \left (b^2-4 a c\right ) (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)^3*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2),x]

[Out]

-((b^2 - 3*a*c)/(a^2*(b^2 - 4*a*c)*e*(d + e*x)^2)) + (b^2 - 2*a*c + b*c*(d + e*x)^2)/(2*a*(b^2 - 4*a*c)*e*(d +
 e*x)^2*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) - ((b^4 - 6*a*b^2*c + 6*a^2*c^2)*ArcTanh[(b + 2*c*(d + e*x)^2)/Sq
rt[b^2 - 4*a*c]])/(a^3*(b^2 - 4*a*c)^(3/2)*e) - (2*b*Log[d + e*x])/(a^3*e) + (b*Log[a + b*(d + e*x)^2 + c*(d +
 e*x)^4])/(2*a^3*e)

Rule 1142

Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m),
Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]

Rule 1114

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rule 740

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e
+ a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 800

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[((d + e*x)^m*(f + g*x))/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^3 \left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^3 \left (a+b x^2+c x^4\right )^2} \, dx,x,d+e x\right )}{e}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^2 \left (a+b x+c x^2\right )^2} \, dx,x,(d+e x)^2\right )}{2 e}\\ &=\frac{b^2-2 a c+b c (d+e x)^2}{2 a \left (b^2-4 a c\right ) e (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{\operatorname{Subst}\left (\int \frac{-2 \left (b^2-3 a c\right )-2 b c x}{x^2 \left (a+b x+c x^2\right )} \, dx,x,(d+e x)^2\right )}{2 a \left (b^2-4 a c\right ) e}\\ &=\frac{b^2-2 a c+b c (d+e x)^2}{2 a \left (b^2-4 a c\right ) e (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{\operatorname{Subst}\left (\int \left (\frac{2 \left (-b^2+3 a c\right )}{a x^2}-\frac{2 b \left (-b^2+4 a c\right )}{a^2 x}+\frac{2 \left (-b^4+5 a b^2 c-3 a^2 c^2-b c \left (b^2-4 a c\right ) x\right )}{a^2 \left (a+b x+c x^2\right )}\right ) \, dx,x,(d+e x)^2\right )}{2 a \left (b^2-4 a c\right ) e}\\ &=-\frac{b^2-3 a c}{a^2 \left (b^2-4 a c\right ) e (d+e x)^2}+\frac{b^2-2 a c+b c (d+e x)^2}{2 a \left (b^2-4 a c\right ) e (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{2 b \log (d+e x)}{a^3 e}-\frac{\operatorname{Subst}\left (\int \frac{-b^4+5 a b^2 c-3 a^2 c^2-b c \left (b^2-4 a c\right ) x}{a+b x+c x^2} \, dx,x,(d+e x)^2\right )}{a^3 \left (b^2-4 a c\right ) e}\\ &=-\frac{b^2-3 a c}{a^2 \left (b^2-4 a c\right ) e (d+e x)^2}+\frac{b^2-2 a c+b c (d+e x)^2}{2 a \left (b^2-4 a c\right ) e (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{2 b \log (d+e x)}{a^3 e}+\frac{b \operatorname{Subst}\left (\int \frac{b+2 c x}{a+b x+c x^2} \, dx,x,(d+e x)^2\right )}{2 a^3 e}+\frac{\left (b^4-6 a b^2 c+6 a^2 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x+c x^2} \, dx,x,(d+e x)^2\right )}{2 a^3 \left (b^2-4 a c\right ) e}\\ &=-\frac{b^2-3 a c}{a^2 \left (b^2-4 a c\right ) e (d+e x)^2}+\frac{b^2-2 a c+b c (d+e x)^2}{2 a \left (b^2-4 a c\right ) e (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{2 b \log (d+e x)}{a^3 e}+\frac{b \log \left (a+b (d+e x)^2+c (d+e x)^4\right )}{2 a^3 e}-\frac{\left (b^4-6 a b^2 c+6 a^2 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c (d+e x)^2\right )}{a^3 \left (b^2-4 a c\right ) e}\\ &=-\frac{b^2-3 a c}{a^2 \left (b^2-4 a c\right ) e (d+e x)^2}+\frac{b^2-2 a c+b c (d+e x)^2}{2 a \left (b^2-4 a c\right ) e (d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{\left (b^4-6 a b^2 c+6 a^2 c^2\right ) \tanh ^{-1}\left (\frac{b+2 c (d+e x)^2}{\sqrt{b^2-4 a c}}\right )}{a^3 \left (b^2-4 a c\right )^{3/2} e}-\frac{2 b \log (d+e x)}{a^3 e}+\frac{b \log \left (a+b (d+e x)^2+c (d+e x)^4\right )}{2 a^3 e}\\ \end{align*}

Mathematica [A]  time = 0.509979, size = 284, normalized size = 1.33 \[ \frac{\frac{\left (6 a^2 c^2+b^3 \sqrt{b^2-4 a c}-6 a b^2 c-4 a b c \sqrt{b^2-4 a c}+b^4\right ) \log \left (-\sqrt{b^2-4 a c}+b+2 c (d+e x)^2\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac{\left (-6 a^2 c^2+b^3 \sqrt{b^2-4 a c}+6 a b^2 c-4 a b c \sqrt{b^2-4 a c}-b^4\right ) \log \left (\sqrt{b^2-4 a c}+b+2 c (d+e x)^2\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac{a \left (-3 a b c-2 a c^2 (d+e x)^2+b^2 c (d+e x)^2+b^3\right )}{\left (4 a c-b^2\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{a}{(d+e x)^2}-4 b \log (d+e x)}{2 a^3 e} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)^3*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2),x]

[Out]

(-(a/(d + e*x)^2) + (a*(b^3 - 3*a*b*c + b^2*c*(d + e*x)^2 - 2*a*c^2*(d + e*x)^2))/((-b^2 + 4*a*c)*(a + b*(d +
e*x)^2 + c*(d + e*x)^4)) - 4*b*Log[d + e*x] + ((b^4 - 6*a*b^2*c + 6*a^2*c^2 + b^3*Sqrt[b^2 - 4*a*c] - 4*a*b*c*
Sqrt[b^2 - 4*a*c])*Log[b - Sqrt[b^2 - 4*a*c] + 2*c*(d + e*x)^2])/(b^2 - 4*a*c)^(3/2) + ((-b^4 + 6*a*b^2*c - 6*
a^2*c^2 + b^3*Sqrt[b^2 - 4*a*c] - 4*a*b*c*Sqrt[b^2 - 4*a*c])*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*(d + e*x)^2])/(b^
2 - 4*a*c)^(3/2))/(2*a^3*e)

________________________________________________________________________________________

Maple [C]  time = 0.036, size = 1014, normalized size = 4.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^3/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2,x)

[Out]

-1/2/a^2/e/(e*x+d)^2-2*b*ln(e*x+d)/a^3/e-1/a/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*
d^4+2*b*d*e*x+b*d^2+a)*c^2*e/(4*a*c-b^2)*x^2+1/2/a^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^
2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)*c*e/(4*a*c-b^2)*x^2*b^2-2/a/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*
x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)*c^2*d/(4*a*c-b^2)*x+1/a^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^
3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)*c*d/(4*a*c-b^2)*x*b^2-1/a/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*
c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)/e/(4*a*c-b^2)*c^2*d^2+1/2/a^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^
2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)/e/(4*a*c-b^2)*b^2*c*d^2-3/2/a/(c*e^4*x^4+4*c*d*e^3*x^3+6*
c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)/e/(4*a*c-b^2)*b*c+1/2/a^2/(c*e^4*x^4+4*c*d*e^3*x^
3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)/e/(4*a*c-b^2)*b^3+1/a^3/(4*a*c-b^2)/e*sum((b*
e^3*c*(4*a*c-b^2)*_R^3+3*b*d*e^2*c*(4*a*c-b^2)*_R^2+e*(12*a*b*c^2*d^2-3*b^3*c*d^2-3*a^2*c^2+5*a*b^2*c-b^4)*_R+
4*a*b*c^2*d^3-b^3*c*d^3-3*a^2*c^2*d+5*a*b^2*c*d-b^4*d)/(2*_R^3*c*e^3+6*_R^2*c*d*e^2+6*_R*c*d^2*e+2*c*d^3+_R*b*
e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*e^3*_Z^3+(6*c*d^2*e^2+b*e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+c*d^4+b*d^
2+a))

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^3/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 5.09061, size = 9488, normalized size = 44.54 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^3/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2,x, algorithm="fricas")

[Out]

[-1/2*(2*(a*b^4*c - 7*a^2*b^2*c^2 + 12*a^3*c^3)*e^4*x^4 + 8*(a*b^4*c - 7*a^2*b^2*c^2 + 12*a^3*c^3)*d*e^3*x^3 +
 a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + 2*(a*b^4*c - 7*a^2*b^2*c^2 + 12*a^3*c^3)*d^4 + (2*a*b^5 - 15*a^2*b^3*c +
 28*a^3*b*c^2 + 12*(a*b^4*c - 7*a^2*b^2*c^2 + 12*a^3*c^3)*d^2)*e^2*x^2 + (2*a*b^5 - 15*a^2*b^3*c + 28*a^3*b*c^
2)*d^2 + 2*(4*(a*b^4*c - 7*a^2*b^2*c^2 + 12*a^3*c^3)*d^3 + (2*a*b^5 - 15*a^2*b^3*c + 28*a^3*b*c^2)*d)*e*x + ((
b^4*c - 6*a*b^2*c^2 + 6*a^2*c^3)*e^6*x^6 + 6*(b^4*c - 6*a*b^2*c^2 + 6*a^2*c^3)*d*e^5*x^5 + (b^5 - 6*a*b^3*c +
6*a^2*b*c^2 + 15*(b^4*c - 6*a*b^2*c^2 + 6*a^2*c^3)*d^2)*e^4*x^4 + (b^4*c - 6*a*b^2*c^2 + 6*a^2*c^3)*d^6 + 4*(5
*(b^4*c - 6*a*b^2*c^2 + 6*a^2*c^3)*d^3 + (b^5 - 6*a*b^3*c + 6*a^2*b*c^2)*d)*e^3*x^3 + (b^5 - 6*a*b^3*c + 6*a^2
*b*c^2)*d^4 + (a*b^4 - 6*a^2*b^2*c + 6*a^3*c^2 + 15*(b^4*c - 6*a*b^2*c^2 + 6*a^2*c^3)*d^4 + 6*(b^5 - 6*a*b^3*c
 + 6*a^2*b*c^2)*d^2)*e^2*x^2 + (a*b^4 - 6*a^2*b^2*c + 6*a^3*c^2)*d^2 + 2*(3*(b^4*c - 6*a*b^2*c^2 + 6*a^2*c^3)*
d^5 + 2*(b^5 - 6*a*b^3*c + 6*a^2*b*c^2)*d^3 + (a*b^4 - 6*a^2*b^2*c + 6*a^3*c^2)*d)*e*x)*sqrt(b^2 - 4*a*c)*log(
(2*c^2*e^4*x^4 + 8*c^2*d*e^3*x^3 + 2*c^2*d^4 + 2*(6*c^2*d^2 + b*c)*e^2*x^2 + 2*b*c*d^2 + 4*(2*c^2*d^3 + b*c*d)
*e*x + b^2 - 2*a*c + (2*c*e^2*x^2 + 4*c*d*e*x + 2*c*d^2 + b)*sqrt(b^2 - 4*a*c))/(c*e^4*x^4 + 4*c*d*e^3*x^3 + c
*d^4 + (6*c*d^2 + b)*e^2*x^2 + b*d^2 + 2*(2*c*d^3 + b*d)*e*x + a)) - ((b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*e^6
*x^6 + 6*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d*e^5*x^5 + (b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2 + 15*(b^5*c - 8*a*
b^3*c^2 + 16*a^2*b*c^3)*d^2)*e^4*x^4 + (b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^6 + 4*(5*(b^5*c - 8*a*b^3*c^2 +
16*a^2*b*c^3)*d^3 + (b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2)*d)*e^3*x^3 + (b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2)*d^4 + (
a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^4 + 6*(b^6 - 8*a*b^4*c + 16*a^2
*b^2*c^2)*d^2)*e^2*x^2 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d^2 + 2*(3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*
d^5 + 2*(b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2)*d^3 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d)*e*x)*log(c*e^4*x^4 +
4*c*d*e^3*x^3 + c*d^4 + (6*c*d^2 + b)*e^2*x^2 + b*d^2 + 2*(2*c*d^3 + b*d)*e*x + a) + 4*((b^5*c - 8*a*b^3*c^2 +
 16*a^2*b*c^3)*e^6*x^6 + 6*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d*e^5*x^5 + (b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2
+ 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^2)*e^4*x^4 + (b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^6 + 4*(5*(b^5*
c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^3 + (b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2)*d)*e^3*x^3 + (b^6 - 8*a*b^4*c + 16*a^
2*b^2*c^2)*d^4 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^4 + 6*(b^6 -
8*a*b^4*c + 16*a^2*b^2*c^2)*d^2)*e^2*x^2 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d^2 + 2*(3*(b^5*c - 8*a*b^3*c^
2 + 16*a^2*b*c^3)*d^5 + 2*(b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2)*d^3 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d)*e*x
)*log(e*x + d))/((a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*e^7*x^6 + 6*(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)
*d*e^6*x^5 + (a^3*b^5 - 8*a^4*b^3*c + 16*a^5*b*c^2 + 15*(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*d^2)*e^5*x^4
+ 4*(5*(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*d^3 + (a^3*b^5 - 8*a^4*b^3*c + 16*a^5*b*c^2)*d)*e^4*x^3 + (a^4
*b^4 - 8*a^5*b^2*c + 16*a^6*c^2 + 15*(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*d^4 + 6*(a^3*b^5 - 8*a^4*b^3*c +
 16*a^5*b*c^2)*d^2)*e^3*x^2 + 2*(3*(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*d^5 + 2*(a^3*b^5 - 8*a^4*b^3*c + 1
6*a^5*b*c^2)*d^3 + (a^4*b^4 - 8*a^5*b^2*c + 16*a^6*c^2)*d)*e^2*x + ((a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*d
^6 + (a^3*b^5 - 8*a^4*b^3*c + 16*a^5*b*c^2)*d^4 + (a^4*b^4 - 8*a^5*b^2*c + 16*a^6*c^2)*d^2)*e), -1/2*(2*(a*b^4
*c - 7*a^2*b^2*c^2 + 12*a^3*c^3)*e^4*x^4 + 8*(a*b^4*c - 7*a^2*b^2*c^2 + 12*a^3*c^3)*d*e^3*x^3 + a^2*b^4 - 8*a^
3*b^2*c + 16*a^4*c^2 + 2*(a*b^4*c - 7*a^2*b^2*c^2 + 12*a^3*c^3)*d^4 + (2*a*b^5 - 15*a^2*b^3*c + 28*a^3*b*c^2 +
 12*(a*b^4*c - 7*a^2*b^2*c^2 + 12*a^3*c^3)*d^2)*e^2*x^2 + (2*a*b^5 - 15*a^2*b^3*c + 28*a^3*b*c^2)*d^2 + 2*(4*(
a*b^4*c - 7*a^2*b^2*c^2 + 12*a^3*c^3)*d^3 + (2*a*b^5 - 15*a^2*b^3*c + 28*a^3*b*c^2)*d)*e*x + 2*((b^4*c - 6*a*b
^2*c^2 + 6*a^2*c^3)*e^6*x^6 + 6*(b^4*c - 6*a*b^2*c^2 + 6*a^2*c^3)*d*e^5*x^5 + (b^5 - 6*a*b^3*c + 6*a^2*b*c^2 +
 15*(b^4*c - 6*a*b^2*c^2 + 6*a^2*c^3)*d^2)*e^4*x^4 + (b^4*c - 6*a*b^2*c^2 + 6*a^2*c^3)*d^6 + 4*(5*(b^4*c - 6*a
*b^2*c^2 + 6*a^2*c^3)*d^3 + (b^5 - 6*a*b^3*c + 6*a^2*b*c^2)*d)*e^3*x^3 + (b^5 - 6*a*b^3*c + 6*a^2*b*c^2)*d^4 +
 (a*b^4 - 6*a^2*b^2*c + 6*a^3*c^2 + 15*(b^4*c - 6*a*b^2*c^2 + 6*a^2*c^3)*d^4 + 6*(b^5 - 6*a*b^3*c + 6*a^2*b*c^
2)*d^2)*e^2*x^2 + (a*b^4 - 6*a^2*b^2*c + 6*a^3*c^2)*d^2 + 2*(3*(b^4*c - 6*a*b^2*c^2 + 6*a^2*c^3)*d^5 + 2*(b^5
- 6*a*b^3*c + 6*a^2*b*c^2)*d^3 + (a*b^4 - 6*a^2*b^2*c + 6*a^3*c^2)*d)*e*x)*sqrt(-b^2 + 4*a*c)*arctan(-(2*c*e^2
*x^2 + 4*c*d*e*x + 2*c*d^2 + b)*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c)) - ((b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*e^6*
x^6 + 6*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d*e^5*x^5 + (b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2 + 15*(b^5*c - 8*a*b
^3*c^2 + 16*a^2*b*c^3)*d^2)*e^4*x^4 + (b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^6 + 4*(5*(b^5*c - 8*a*b^3*c^2 + 1
6*a^2*b*c^3)*d^3 + (b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2)*d)*e^3*x^3 + (b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2)*d^4 + (a
*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^4 + 6*(b^6 - 8*a*b^4*c + 16*a^2*
b^2*c^2)*d^2)*e^2*x^2 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d^2 + 2*(3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d
^5 + 2*(b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2)*d^3 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d)*e*x)*log(c*e^4*x^4 + 4
*c*d*e^3*x^3 + c*d^4 + (6*c*d^2 + b)*e^2*x^2 + b*d^2 + 2*(2*c*d^3 + b*d)*e*x + a) + 4*((b^5*c - 8*a*b^3*c^2 +
16*a^2*b*c^3)*e^6*x^6 + 6*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d*e^5*x^5 + (b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2 +
 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^2)*e^4*x^4 + (b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^6 + 4*(5*(b^5*c
 - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^3 + (b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2)*d)*e^3*x^3 + (b^6 - 8*a*b^4*c + 16*a^2
*b^2*c^2)*d^4 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^4 + 6*(b^6 - 8
*a*b^4*c + 16*a^2*b^2*c^2)*d^2)*e^2*x^2 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d^2 + 2*(3*(b^5*c - 8*a*b^3*c^2
 + 16*a^2*b*c^3)*d^5 + 2*(b^6 - 8*a*b^4*c + 16*a^2*b^2*c^2)*d^3 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d)*e*x)
*log(e*x + d))/((a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*e^7*x^6 + 6*(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*
d*e^6*x^5 + (a^3*b^5 - 8*a^4*b^3*c + 16*a^5*b*c^2 + 15*(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*d^2)*e^5*x^4 +
 4*(5*(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*d^3 + (a^3*b^5 - 8*a^4*b^3*c + 16*a^5*b*c^2)*d)*e^4*x^3 + (a^4*
b^4 - 8*a^5*b^2*c + 16*a^6*c^2 + 15*(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*d^4 + 6*(a^3*b^5 - 8*a^4*b^3*c +
16*a^5*b*c^2)*d^2)*e^3*x^2 + 2*(3*(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*d^5 + 2*(a^3*b^5 - 8*a^4*b^3*c + 16
*a^5*b*c^2)*d^3 + (a^4*b^4 - 8*a^5*b^2*c + 16*a^6*c^2)*d)*e^2*x + ((a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*d^
6 + (a^3*b^5 - 8*a^4*b^3*c + 16*a^5*b*c^2)*d^4 + (a^4*b^4 - 8*a^5*b^2*c + 16*a^6*c^2)*d^2)*e)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**3/(a+b*(e*x+d)**2+c*(e*x+d)**4)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.83423, size = 302, normalized size = 1.42 \begin{align*} \frac{{\left (b^{4} - 6 \, a b^{2} c + 6 \, a^{2} c^{2}\right )} \arctan \left (-\frac{b + \frac{2 \, a}{{\left (x e + d\right )}^{2}}}{\sqrt{-b^{2} + 4 \, a c}}\right ) e^{\left (-1\right )}}{{\left (a^{3} b^{2} - 4 \, a^{4} c\right )} \sqrt{-b^{2} + 4 \, a c}} + \frac{b e^{\left (-1\right )} \log \left (c + \frac{b}{{\left (x e + d\right )}^{2}} + \frac{a}{{\left (x e + d\right )}^{4}}\right )}{2 \, a^{3}} + \frac{{\left (\frac{b^{3} c - 3 \, a b c^{2}}{a} + \frac{{\left (b^{4} e - 4 \, a b^{2} c e + 2 \, a^{2} c^{2} e\right )} e^{\left (-1\right )}}{{\left (x e + d\right )}^{2} a}\right )} e^{\left (-1\right )}}{2 \,{\left (b^{2} - 4 \, a c\right )} a^{2}{\left (c + \frac{b}{{\left (x e + d\right )}^{2}} + \frac{a}{{\left (x e + d\right )}^{4}}\right )}} - \frac{e^{\left (-1\right )}}{2 \,{\left (x e + d\right )}^{2} a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^3/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2,x, algorithm="giac")

[Out]

(b^4 - 6*a*b^2*c + 6*a^2*c^2)*arctan(-(b + 2*a/(x*e + d)^2)/sqrt(-b^2 + 4*a*c))*e^(-1)/((a^3*b^2 - 4*a^4*c)*sq
rt(-b^2 + 4*a*c)) + 1/2*b*e^(-1)*log(c + b/(x*e + d)^2 + a/(x*e + d)^4)/a^3 + 1/2*((b^3*c - 3*a*b*c^2)/a + (b^
4*e - 4*a*b^2*c*e + 2*a^2*c^2*e)*e^(-1)/((x*e + d)^2*a))*e^(-1)/((b^2 - 4*a*c)*a^2*(c + b/(x*e + d)^2 + a/(x*e
 + d)^4)) - 1/2*e^(-1)/((x*e + d)^2*a^2)